

ENERGY EFFICIENCY PUMPS AND FANS

Energy Conservation Opportunities

MA OTA

April 15, 2008

Energy Efficiency Pumps and Fans

PRESENTATION BY

CECILE GORDON, P.E. MA OFFICE OF TECHNICAL ASSISTANCE AND TECHNOLOGY

617-626-1092

cecile.gordon@state.ma.us

Energy Efficiency Pumps

- Involve all levels of employees in suggesting pump efficiency improvements
- Conduct an In-Plant Pumping System Survey
- Maintain Pumping Systems Effectively
- Correct inefficiencies in the system

Energy Efficiency Pumps

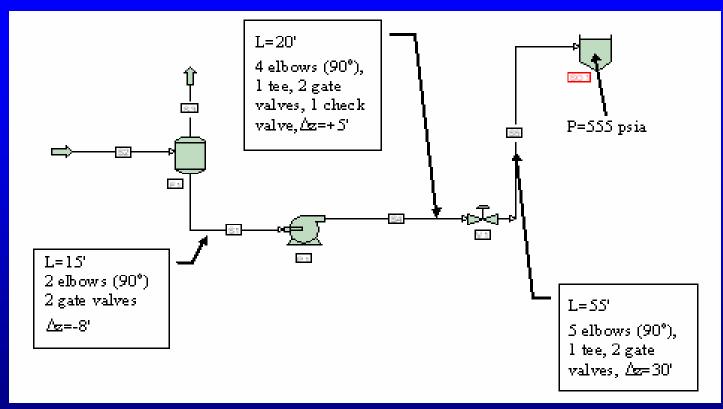
Involve all Levels of Employees

Management Supervisors Operators

PUMPING SYSTEM SURVEY

The Department of Energy provides a software tool to assess the efficiency of pumping systems called PSAT.

 The DOE has obtained savings using PSAT in the following industries however pumps are common to all industries.


Industry # of Assessments	Average Energy savings Million BTU/year	Average Annual savings
 Aluminum (2) 	1,882,500	\$74,000
 Chemicals (1) 	1,601,200	\$106,000
 Forest Products 	4,717,400	\$186,500
Mining(7)	9,419,100	\$410,700
 Petroleum (2) 	1,150,000	\$46,000 UTA
• Steel (2)	5.787.500	\$231.500

Conduct an In-Plant Pumping System Survey, this includes:

- Develop a system curve by measuring pressure at selected points in the pipe <u>at different flows.</u>
- The selected points include suction and discharge pressures.
- Obtain the performance curve of the pump from the manufacturer if you do not already have it.

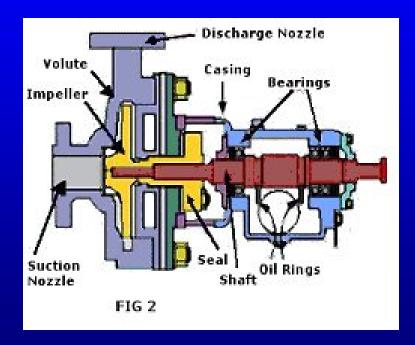
SCHEMATIC OF A PUMPING SYSTEM

Energy Efficiency Pumps

In-Plant Pumping System Survey, cont'd

In-Plant Pumping System Survey, cont'd

- Find out where the system curve intersects the performance curve.
- This point should be within 20% of the pumps best efficiency point (BEP).
- Average operating flow check control valve opening.



Energy Efficiency Pumps

MAINTAIN PUMPING SYSTEMS EFFECTIVELY

- Packing.
- Mechanical Seals.
- Bearings.

MAINTAIN PUMPING SYSTEMS EFFECTIVELY, cont'd

Motor/Pump Alignment.

Motor Condition.

Conduct a detailed review of your plants pumping system if:

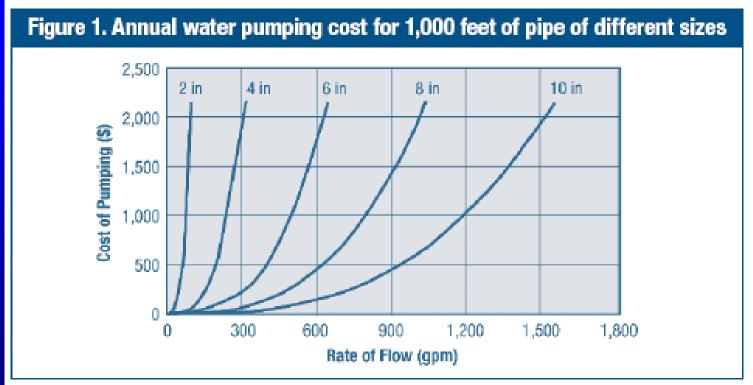
 The imbalance between the designed system requirements and the actual (measured) discharged head and flow exceeds 20%

A pump may be incorrectly sized if:

- it operates under throttled conditions
- has a high bypass flow rate
- has a flow rate that varies more than 30% from its best efficiency point (BEP).

Efficient solutions include:

- using multiple pumps by adding smaller auxiliary (pony) pumps
- trimming impellers
- adding a variable speed drive.


Reduce pumping costs through optimum pipe sizing -

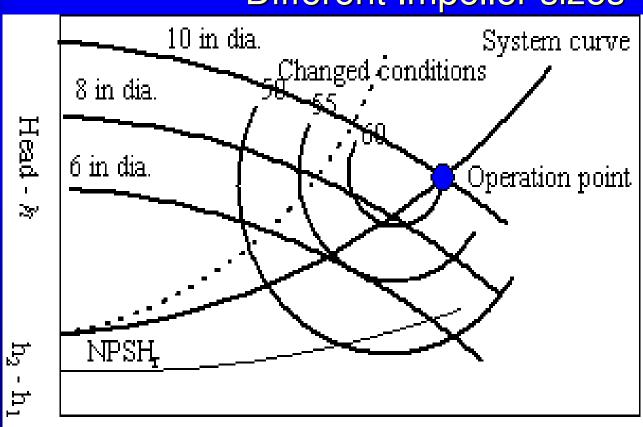
- Frictional losses depend on:
 - Flow in pipe
 - Overall pipe length
 - Surface roughness
 - Fluid viscosity
 - Pipe diameter
- Keeping all other variables the same, the energy required to pump will decrease with increasing pipe diameter

Energy Efficiency

CORRECT INEFFICIENCIES IN THE SYSTEM

Correct Imbalanced Pumping Systems

Based on 1,000 ft. for clean iron and steel pipes (schedule 40) for pumping 70°F water. Electricity rate—0.05 \$/kWh and 8,760 operating hours annually. Combined pump and motor efficiency—70%.



Trim or replace impellers

- Trimming involves machining the impeller to reduce its diameter.
- Many pump manufacturers provide performance curves at different impeller sizes.
- Smaller impellers require less brake horsepower and therefore energy.

Different Impeller sizes

Flow Rate - q

www.engineringtoolbox.com

Variable Speed Drives:

 Will respond to the system flow requirements and therefore remove the problem of using more power than the system demands.

VARIABLE SPEED DRIVE

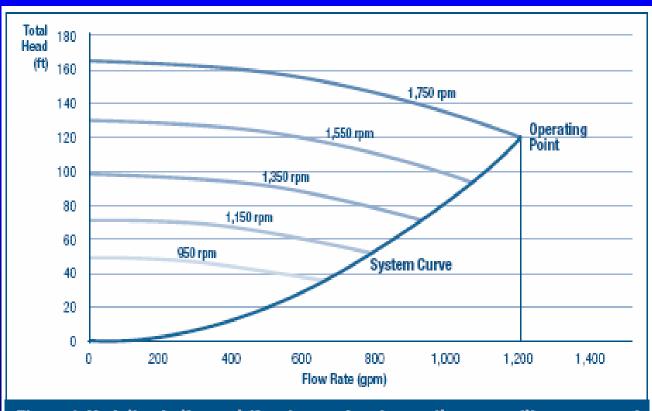


Figure 1. Variation in the centrifugal pump head capacity curve with pump speed

Energy Efficiency - Fans

The Fan System Assessment Tool (FSAT).

- A DOE software tool to assess fan system efficiency
- Quantifies energy consumption and savings opportunities
- Simple and Quick requires only basic information
- Calculates the amount of energy used; determines system efficiency and savings potential.

Energy Efficiency - Fans

Perform periodic maintenance

Ensure proper fan sizing

 Design with inlet and outlet ducts as straight as possible

Energy Efficiency - Fans

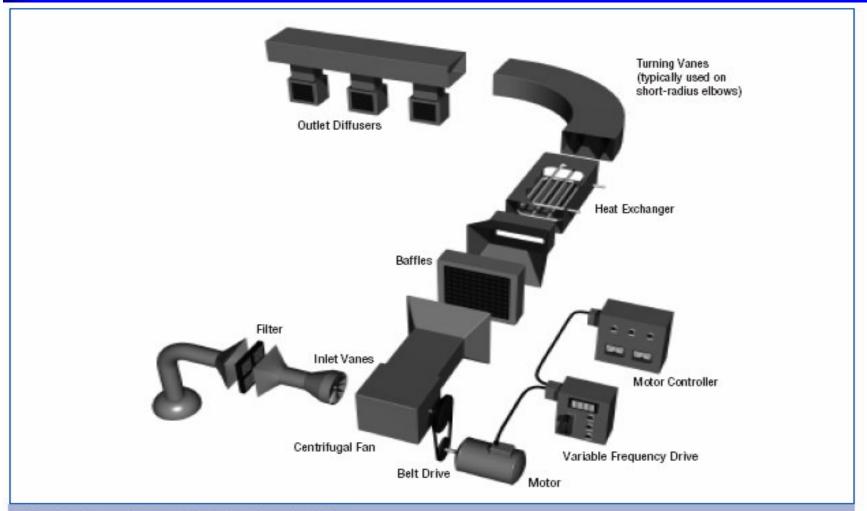
- Consider Variable Frequency Drives (VFDs) to improve fan operating efficiency over a wide range of operating conditions
- Maintain proper belt tension and alignment
- Combine fans in parallel or in series where applicable to increase efficiency and reduce costs.

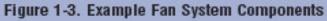
Common Maintenance Tasks Include:

- Periodic inspection of all system units
- Bearing lubrication and replacement
- Belt tightening and replacement
- Motor repair and replacement
- Fan and system cleaning
- Check ductwork leaks

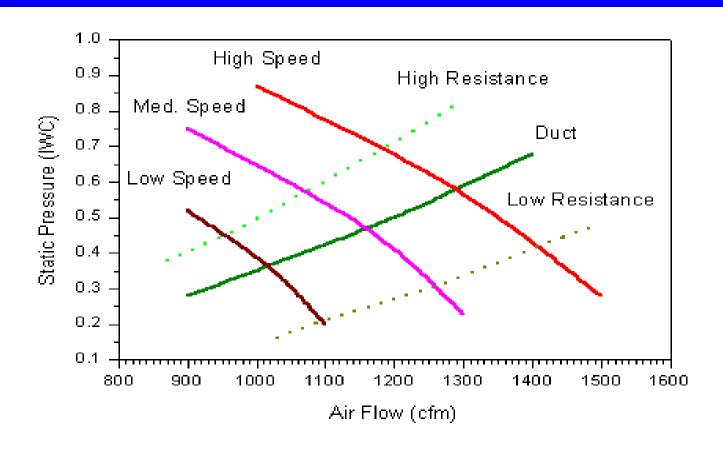
Ensure Proper Fan Sizing

 Compare pressure required by the end use to the pressure generated by the fan. If it is oversized it will generate more total pressure for the same airflow than a correctly sized fan.


FAN AND SYSTEM CURVES


- Generate a system curve to determine power consumption.
- Obtain the fan curve from the manufacturer.
- If the system curve intersects the fan curve at a point that is not near the best efficiency point (BEP), the fan is oversized.

Example of Fan System Components



VARIABLE FREQUENCY DRIVES

- improve fan operating efficiency over a wide range of operating conditions.
- provide an effective and easy method of controlling airflow.
- are able to retrofit to existing motors.
- eliminate fouling problems associated with mechanical control devices.
- One disadvantage is a low rotational speed risks unstable operation.

Figure 1. Influence of fan performance and duct flow resistance on system operating point.

- Energy Conservation for Pumps and Fans must involve all levels of employees.
- Conduct an In-Plant Pump or Fan System Survey
- Correct inefficiencies in the system
- Institute A Preventative Maintenance Program
- There are state and federal agencies that conduct free facility audits to identify areas where energy can be conserved.
- For more information contact OTA at: <u>www.mass.gov/envir/ota</u> or at 617-626-1060

References:

- DOE Pumping Systems TIP Sheets
- http://www1.eere.energy.gov/industry/bestpractices/tip_s heets_pumps.html
- DOE and Hydraulic Institute: Improving Fan System Performance: A Sourcebook for Industry

